Mean and variance adaptation within the MLLR framework

نویسندگان

  • Mark J. F. Gales
  • Philip C. Woodland
چکیده

One of the key issues for adaptation algorithms is to modify a large number of parameters with only a small amount of adaptation data. Speaker adaptation techniques try to obtain near speaker dependent (SD) performance with only small amounts of speaker speciic data, and are often based on initial speaker independent (SI) recognition systems. Some of these speaker adaptation techniques may also be applied to the task of adaptation to a new acoustic environment. In this case a SI recognition system trained in, typically, a clean acoustic environment is adapted to operate in a new, noise-corrupted, acoustic environment. This paper examines the Maximum Likelihood Linear Regression (MLLR) adaptation technique. MLLR estimates linear transformations for groups of models parameters to maximise the likelihood of the adaptation data. Previously, MLLR has been applied to the mean parameters in mixture Gaussian HMM systems. In this paper MLLR is extended to also update the Gaussian variances and re-estimation formulae are derived for these variance transforms. MLLR with variance compensation is evaluated on several large vocabulary recognition tasks. The use of mean and variance MLLR adaptation was found to give an additional 2% to 7% decrease in word error rate over mean-only MLLR adaptation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variance compensation within the MLLR framework for robust speech recognition and speaker adaptation

This paper investigates the use of maximum likelihood linear regression (MLLR) for both speaker and environment adaptation. MLLR transforms the mean and variance parameters of a set of HMMs. In this paper a number of different types of linear transformations of the variances are examined including full, block diagonal, and diagonal transformation matrices. Experiments on large vocabulary speake...

متن کامل

Maximum a posteriori linear regression (MAPLR) variance adaptation for continuous density HMMS

In this paper, the theoretical framework of maximum a posteriori linear regression (MAPLR) based variance adaptation for continuous density HMMs is described. In our approach, a class of informative prior distribution for MAPLR based variance adaptation is identified, from which the close form solution of MAPLR based variance adaptation is obtained under its EM formulation. Effects of the propo...

متن کامل

Maximum a Posteriori Linear Reg Adaptation for Continuo

In this paper, the theoretical framework of maximum a posteriori linear regression (MAPLR) based variance adaptation for continuous density HMMs is described. In our approach, a class of informative prior distribution for MAPLR based variance adaptation is identified, from which the close form solution of MAPLR based variance adaptation is obtained under its EM formulation. Effects of the propo...

متن کامل

Weighted Principal Component Mllr for Speaker Adaptation

We present and describe two new speaker adaptation methods which apply principal component analysis to maximum likelihood linear regression (MLLR). If we apply MLLR after transforming the baseline mean vectors by their eigenvectors, the contributions of these eigenvalues to the variance of the estimates for the MLLR matrix are inversely proportional to their corresponding eigenvalues. In the fi...

متن کامل

Maximum a Posterior Linear Regression Based Variance Adaptation of Continuous Density Hmms

In this paper, the theoretical framework of maximum a posterior linear regression (MAPLR) based variance adaptation for continuous density HMMs is described. In our approach, a class of informative prior distribution for MAPLR based variance adaptation is identified, from which the close form solution of MAPLR based variance adaptation is obtained under its EM formulation. Effects of the propos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer Speech & Language

دوره 10  شماره 

صفحات  -

تاریخ انتشار 1996